

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Problem . 3

2 Theory 4
2.1 Comprehension directions . 4

2.1.1 Top-down comprehension . 4
2.1.2 Bottom-up comprehension . 5

2.2 Eye-tracking . 6
2.2.1 General . 6
2.2.2 Eye-tracking on source code . 8
2.2.3 Eye-tracking without an eyetracker 9

2.3 Neuroimaging . 10
2.3.1 General . 10
2.3.2 Constraints . 11

2.4 Focus of current source code comprehension studies 12
2.4.1 Focus of current studies using eye-tracking 13
2.4.2 Focus of current studies using neuroimaging 14
2.4.3 Differences between studies employing neuroimaging and eye-tracking 15

3 Study Design 18
3.1 Objective . 18
3.2 Experimental Material . 18

3.2.1 Question Types . 18
3.2.2 Code Snippets . 19

3.3 Experimental Units . 20
3.4 Tasks . 21
3.5 Hypotheses, Parameters, and Variables . 21
3.6 Experiment Design . 22
3.7 Procedure . 22
3.8 Execution . 23

3.8.1 First evaluation . 23
3.8.2 Main Experiment run . 24

i

Contents

4 Analysis and Results 25
4.1 Overview of collected Data . 25
4.2 Analysis and Results . 26

4.2.1 Impact of question types on solving times 26
4.2.2 Impact of question types on correctness 28
4.2.3 Other analysis possibilities . 29

4.3 Evaluation . 31
4.3.1 threats to validity . 31
4.3.2 lessons learned . 32

5 Summary and further research 33

ii

This study investigates code comprehension studies using neuroimaging and eye-tracking tech-
nologies. Due to novelty and different technologies, many studies differ widely. Comparing
studies from both fields, many did not provide complete information for reproducing their find-
ings. Missing information often included question types which could result in significant dif-
ferences in solving behaviour.
An online remote eye-tracking survey with 16 participants was designed and conducted. The
analysis shows no details of correlation between question type and solving time or correctness
due to missing normal distribution and low sample size. However, a correlation cannot be re-
jected. Future research may show evidence that the question type affects solving behaviour.

Keywords: code comprehension, remote study, survey, eye-tracking, remote eye-tracking, neu-
roimaging, REyeker

1 Introduction

1.1 Motivation

Humans have been communicating for over 5000 years in different countries, regions and cul-
tures using different languages [10]. Humans’ verbal and written communication has changed
and evolved over thousands of years. They contain many different rules and intricacies that
are hard to comprehend and grasp [10]. There have also been many different programming
languages in over 50 years. These have also changed over the years, but more rapidly and
less gradually than natural languages. Programming languages started as machine code - sim-
ple instructions for the machines represented as zeroes and ones, which the engineer skillfully
chained together to accomplish a larger goal. Additionally, program languages are structurally
different to natural languages. The text of natural languages such as English or German is struc-
tured in sentences and paragraphs. In contrast, programming languages use statements, blocks,
loops and different ways to change the execution order of the program [63]. Later, programming
languages started using short character chains as an identifier for those instructions. However,
developers still needed a lot of skill and abstraction because they had a minimal set of instruc-
tions and specific hardware and memory [79].
Within these years, many programming languages were designed and developed to expand the
possibilities of programming, each with different purpose in mind [21, 79]. Some programming
languages like ’Brainfuck’ were made to confuse, befuddle and interest the code reader [23].
Nowadays, many languages employ feature- and object-oriented languages [60]. Before re-
search in the field of understanding program comprehension started, programmers needed to
rely on their intuition and experience, whether it was for designing a new programming lan-
guage [19], locating syntax and logical errors [14] or more. Researchers could draw many
different conclusions using studies with methods like neuroimaging (section 2.3.1), eyetracking
(section 2.2.1) or a combination of those two.
These deductions help distinguish novice and advanced programmers by their programming
code reading behaviour [5, 45], help understand the importance of syntax structure and high-
lighting [4, 8, 18, 67]. Research has also shown the differences in activated brain regions be-
tween natural text and programming code for comprehension purposes [28, 37], the reading
order during software debugging [47, 66] and many more. These research results can help
create better programming languages, syntax highlighting, debuggers, and helpful tools. Addi-
tionally, those conclusions can help design new teaching methods for people trying to learn to
program.

2

1 Introduction

1.2 Problem

The program comprehension research has only started recently, compared to other scientific
fields. Nevertheless, the research is done extensively using various techniques and technolo-
gies. There may be ways to improve the realization of these researches which have not been
considered significant, as will be explained in section 2.4.
Technologies such as fMRI (functional Magnetic Resonance Imaging) impose several con-
straints and restrictions (section 2.3.2) while producing insightful data to understand program
comprehension. The primary motivation behind this study is the low level of attention given
to the type of question and their related answer type (section 2.4). The choice of question may
have a non-negligible impact on the program code reader’s comprehension, reading order, or
visual attention. Additionally, the findings of this study may help create new studies and sur-
veys on the topic of program comprehension and their reading order.
Finally, visual attention in code comprehension has been studied for over thirty years [19], and
the methods have evolved from natural ocular observations over head-mounted devices to spe-
cific to less obtrusive and more accurate eye-tracking tools [52].
This study would normally employ eye-tracking devices to accurately track the gaze, atten-
tion and other factors. However, in conditions like the current COVID19 Pandemic (Corona
Virus-Infected Disease in the years 2020-2022), surveying test subjects locally is no longer fea-
sible without risking the subjects health or breaking any laws. Instead, an online tool called
’REyeker’ will be used to emulate an eye-tracker and track the reader’s visual attention. This
study considers the movement of visual attention as a factor for head movement to read and
understand the code. Therefore a smaller amount of total attention movement may reduce the
movement of the head needed. Using the REyeker tool, the test subjects may conduct the study
at their favoured location without a need to purchase any expensive physical eye-tracking tools
or gadgets. This way, a broader range and amount of test subjects can be part of this survey
because the survey is done solely online, and no personnel is required to observe the test sub-
ject. The usage of an online tool also introduces a new set of challenges which will also be
discussed.

3

2 Theory

To better understand this paper, several terms, topics and concepts need to be discussed for
further comprehension. For this reason, those topics will be introduced step by step before
explaining the test setup and procedure, so the reasons for choosing any specific option over
another should become transparent.

2.1 Comprehension directions

A piece of information can be understood in different ways. Prior knowledge about the topic
and similar things help understanding them. Top-Down and Bottom-Up comprehension are two
often used concepts for explaining the order of understanding.

2.1.1 Top-down comprehension

Figure 2.1: Latgalian street sign (Latvia)

Top-Down comprehension uses the reader’s
prior knowledge to understand the meaning
and context of the written words or syn-
tax. For Top-Down comprehension, the gen-
eral context and situation are used to identify
the purpose and meaning of the information
given. This concept can be found in both
natural and programming languages and can
help identify the objective even if the listener
or reader does not know the specific language
or environment yet.
An example in the non-programming world
would be a street sign at an intersection, like
figure 2.1. Given the context of two roads crossing and seeing signs with scriptures at every
starting road, the viewer can deduce that those signs are likely the name of the streets meeting
at the intersection or the directions to settlements following that path. Even if the letters are not
known to the reader, they are likely to find the streets intersecting on a map, even if the map is
in the native, to the reader unknown, language.
This context-deducing comprehension can also be utilized for reading unknown computer pro-
grams. For example, if the name of a method or function is ”sort list”, the reader will understand

4

2 Theory

(a) Quicksort algorithm using descriptive names (b) Quicksort algorithm with obfuscated variables

Figure 2.2: The same quicksort algorithm, but forcing a) Top-Down and b) Bottom-Up

that a given list will be sorted. If the reader is also familiar with list sorting algorithms, they may
understand the order of sorting the list, even if they do not know the specific programming lan-
guage. This same approach can also be used to understand named programs and variables. The
top-down approach will help understand complex programs as long as the naming of objects
like variables and functions is unambiguous. The sorting algorithm of figure 2.2a describes its
purpose solely by the naming without the need to delve deeper into the function.
Even though Top-Down comprehension helps understand a wide variety of situations, there may
be several chances for misunderstandings. Many words have different meanings in context, so
the reader cannot be confident that a method or variable has the initially expected goal or pur-
pose. For example, a method named ”DetectRightPath(...)” can either return the correct turn
at an intersection for a pathfinding algorithm or return the path when turning to the right from
the perspective of the given path. In these situations, the reader needs to dive deeper into the
syntax of the method to understand how it works. This concept of diving deeper to understand
the problem is known as Bottom-Up comprehension.

2.1.2 Bottom-up comprehension

Suppose the reader does not know out of context and prior knowledge to understand the ob-
served text, program, picture, or other information. In that case, the reader needs to understand
it from the details up to the bigger picture.
Imagine that a human sees a picture of the house design of an alien civilization, like the AI gen-
erated figure 2.3. They do not necessarily know that it may be a Building, but they can maybe
identify details like windows, doors, floors, a roof, plants or ornaments to deduce its purpose.
The viewer use generally known concepts to construct a mental image of the intention. There
may be multiple similar buildings next to each other. These groupings of buildings could then
be understood as a settlement, village, city or similar.
Likewise, understanding programming syntax builds from comprehending tiny elements like
addition, variables and loops and how they interact with each other. Bottom-Up comprehension
is the approach to understand new things from small details and recognizing relations between
these atomic details to form more significant parts, because the higher contextual cues cannot

5

2 Theory

be understood or found. Programming requires much abstraction, as computer programs are
not structured like natural languages.

Figure 2.3: AI visualisation of ”Alien
House Design”, created
with Craiyon [20]

Different programmers also write syntax differently, so
reading a program written by a different human may
feel like reading a different language and understand-
ing it will require understanding small sub-parts. Addi-
tionally, Bottom-Up comprehension is beneficial for re-
search purposes, as it reduces both the solving time and
quality differences introduced by prior knowledge [58]
and introduces a higher activation of brain areas than
Top-Down [71]. Research has shown that experienced
and novice programmers do not read unknown code in
the same order [58]. Furthermore, expert programmers
read code less linearly than novice programmers. Ex-
perts will jump inside the syntax much more to cross-
reference and confirm or deny their ideas of the code.
Because Bottom-Up comprehension is beneficial for
research purposes, existing programming code snippets
can be obfuscated not to show the purpose of the vari-
able or function and renamed to ”variable1”, ”variable2”, ”method1”, and similar. An obfus-
cated version of the quicksort sorting algorithm can be found at figure 2.2b. These non-descript
variable and method names will demand a higher load on the subjects’ working memory to store
values throughout the whole program [71].

2.2 Eye-tracking

2.2.1 General

Figure 2.4: The path of visual attention [11]

Eye-tracking is described as the process of
tracing the visual attention over a visible stim-
ulus [12]. For example, tracking the view-
ers’ visual attention to a picture or text re-
veals essential information about the viewers’
thought processes, which cannot effortlessly
be recorded with other methods [12]. When
researching reading behaviour for natural text
or programming code, various eye-tracking
techniques are used to record and understand the readers’ thought processes. A strong indi-
cator of the subjects’ attention is the view area focussed on with their eyes. A model devised
by Just and Carpenter [40] links the focus and attention of a text read with their immediate

6

2 Theory

(a) Common Eye-Tracking setup [74] (b) Attention Heat-map [11]

Figure 2.5: The (a) process and (b) results from recording visual attention via eye-tracking

understanding. The attention stays fixated on the word until the necessary information is pro-
cessed [19]. Visual attention is the subconscious aspect of processing optically observed infor-
mation, whether a landscape in nature, a hand-drawn picture, text or a different optical stimulus.
From one point to the subsequent, the movement visually focussed on points form a path over
time between the points of interest. This path consists of fixations and saccades. Fixations are
the points the eyes focus on, usually for a few milliseconds up to several seconds. Areas with
many fixations and prolonged fixation time indicate great attention, which implies essential,
interesting or complicated information [11, 55, 78]. Saccades are the jumps between fixations.
These swift movements are near-instant and usually measured in degrees, as the distance from
the eye can vary greatly, so the angle size is a constant measurement. Researchers assume that
humans pick up very little information during saccades [11, 55].
A unique kind of a saccade is called a regression. Regressions are backwards jumping saccades
to previous fixations. They indicate the re-intake of visual information to control or correct
perception that has already taken place. A higher amount of regression indicates a higher com-
plexity of the visual stimulus [10, 11]. Historically, there were many different methods to log
the test subjects’ attention. For example, the test subject was asked to provide a verbal assess-
ment of the reading sequence, or the researcher watched the eye movements, both of which are
prone to error. Direct observations or video protocols and other methods were used to improve
the results’ validity [73]. Different conventional approaches, such as asking the test subject after
completing the task about the reading and understanding order, bring the risk of misreporting
an experience. In particular, lengthy tasks are difficult to remember, and each person will assess
their results subjectively, which can skew the results. Researchers can minimize the potential
for misremembering by asking the test subjects to talk or write about their thought processes.
However, this approach is at risk of interrupting the test subject in their thought process during
the main task [12]. There is a similar disadvantage when using specific methods such as think-
ing aloud. The reason is that these techniques always take the programmer away from his or her
original task. Even experienced programmers find it challenging to explain how they read the

7

2 Theory

program with their voice. Subjects must constantly be reminded to communicate their thoughts,
as they do not have to express themselves when programming in a natural environment. Fur-
thermore, many unconscious decisions are made but not communicated, such as logical dead
ends when reading a program [12]. Due to these complications, it is desirable to record the test
subject during their task without interrupting their workflow. Current eye-trackers are head or
desk mounted devices that record fixations and saccades more than 50 times each second, like
the example depicted in figure 2.5a. This recorded data can then help generate heatmaps and
attention information about the visual stimulus, depicted in figure 2.5b.

2.2.2 Eye-tracking on source code

Researchers have used eye-tracking to study the reading behaviour of humans since the 19th
century [73], starting with the reading behaviour for natural text. These experiments mainly
focused on the reading order and the understanding of unmodified source code. This Program-
ming syntax was most of the time stripped of any comments. Comments are helpful to the reader
of the code to understand the methods and ideas presented. Comments will be ignored by the
interpreter or compiler and are solely explanations or annotations to document the program. If
there are no comments, the reader must understand the program’s purpose by understanding the
logic written in the program code. As mentioned in section 2.1, understanding directions differ
whether the names of variables and functions have descriptive names.
Additionally, different researches explored the impact of various identifier styles [8, 67]. Iden-
tifiers are unique names given to each variable, method or function present in a program. They
are indispensable in programming as they give a hint for their purpose by their name and type.
Identifiers are static during the whole program, meaning they will not change their name and
can be an essential tool to understand the code more easily. Modern programming languages
allow developers liberties in naming their identifiers [8]. The main restriction of identifier nam-
ing is the limitation of some characters. Several special characters are not allowed, such as the
empty character ”Space”, because it would break the program execution.
Some integrated development environments (IDEs) even allow programmers to use special char-
acters such as Emojis as identifiers [32]. Often, the identifiers need to be longer than a single
word so the identifier can correctly identify the purpose. The two main formatting styles for
identifiers are CamelCase and under score. The CamelCase style works by stringing together
all words in the identifier and capitalizing each first letter per word for faster reading and under-
standing. The under score style is an outcome of old programming languages not being case-
sensitive. Because of hardware and memory limitations, these languages did not differentiate
between lower and uppercase characters. Therefore, for easier and faster reading and program
comprehension, the under score was introduced between each word in the identifier [67].
The compiler is a computer program that translates one program language into another, mainly
used to generate machine code from different programming languages so that the computer can
execute the program. Each identifier will get renamed to a different string of characters only
read by the machine, so the length or structure of the identifier will not have any impact [2].
Similar to compilers are interpreters, which is another way to process programming source

8

2 Theory

code. It works by directly executing the instructions specified in the program code instead of
producing a target program as a translation [2]. Both kinds of language processors have their
advantages and disadvantages over each other. Using machine code created by a compiler is
usually much faster than interpreted code because the machine code is optimized already for
the machine and does not need to be translated anymore. However, the interpreted source code
must not be compiled to be executable after each change. This flexibility provides better error
diagnostic and changeability [2].

2.2.3 Eye-tracking without an eyetracker

Because of the current worldwide event, also known as the COVID-19 pandemic, the methods
used in this study need to be changed to a more home-friendly approach, as test subjects cannot
be asked to participate in person without risking their health. This issue is why the study will
be conducted online only, bringing its advantages and disadvantages. Usually, this study would
be held in the rooms of the Chemnitz University of Technology with equipment provided by the
software engineering professorship of computer science faculty.
A new strategy needs to be found, as it is currently impossible to conduct any research using sta-
tionary head-mounted or table-mounted eye-tracking devices. There are several requirements
for this new procedure, as the study needs to be conducted without supervision at the partic-
ipant’s location. The first requirement is that the survey respondents can participate without
any additional hardware. There would be an immense amount of organization to ship and re-
turn the devices to and from each participant. Additionally, the participants are not trained in
the setup and handling of these devices, likely introducing unknown inaccuracies. The new
method would also be required to work on most currently used consumer hardware, Not to
exclude participants at an early stage. In addition to not requiring special hardware, the user
should not be required to download and install new software. Newman et a. introduced their
toolbox called TurkEyes in 2020 with four distinct interfaces for capturing and quantifying at-
tention data [54]. This toolbox works without needing a camera or other external devices. In
addition, all TurkEyes interfaces work with current web browsers, so participants can use their
current devices without installing additional programs. These interfaces are called ZoomMaps,
CodeCharts, ImportAnnots and BubbleView.
ZoomMaps capture the visual attention of multi-scale content like maps with panning and
zooming inputs to generate attention heatmaps and quantify the average zoom of each area.
The participant must zoom and pan at several different regions of the stimuli to see and un-
derstand the essential and relevant details to answer the questions. ZoomMaps is mainly used
for capturing attention data for pictures. A higher time spent on a higher zoom level indicates
higher attention spent on this area [54].
CodeCharts are a method to record individual attention points (gaze points). This interface
shows the stimulus for a set amount of time. Immediately after, a grid of three-character codes
will be shown, and the interface requires the participant to self-report the triplet at the position
where they looked at the moment. This approach creates one attention point per participant
per image. Attention heatmaps are created afterwards by averaging all attention points (one

9

2 Theory

per participant), so many participants are required. Survey creators must finetune their chart
placement because otherwise, gridlike artefacts can diminish the output [54].
ImportAnnots works on the idea of participants marking and annotating essential areas in
graphic designs. These annotations are averaged to show the areas the participants found most
interesting. This approach collects participants’ attention given deliberately. Participants need
to mark an area intentionally, so the unwanted viewer’s attention will not be recorded. Conven-
tional eye-tracking methods aim to capture the subconscious attention [54].
BubbleView is another tool to capture visual attention by asking the participants to explore one
image at a time. The image is blurred at the start to disable legibility and emulate peripheral
vision. Regions can be clicked on using the cursor to focus on the area. Clicking on a new
point blurs the previous point again [54]. This method records a dataset for each participant
consisting of several gaze points and their timing. Adjustable parameters are the blur strength,
the size of the viewing bubble and the timing and setup of the experiment [54]. These interfaces
distinguish themselves concerning various criteria, such as cost, type of attention recorded, en-
joyment of the participants, minimum participants required and resemblance to eye-tracking
done by regular eye-trackers.
BubbleView is the interface that solves many problems introduced by the COVID-19 pandemic
to conduct eye-tracking experiments. BubbleView is the only tool to capture the gaze path over
the whole viewing duration, and it both requires no configuration on the user side and works in
a web browser [54]. Participants can even use their mobile devices with touch controls because
the interface works click-based with similar success [41].
A recent study has further developed the ideas presented with BubbleView to better study view-
ing behaviour when reading source code and integrating it into different survey tools. This tool
is called REyeker (Remote Eye Tracker) [72]. It has several adjustable parameters, such as the
shape and size of the deblurred area and the transition between the blurred and deblurred area.
Additionally, the blur can be smeared in either the x or y dimension. REyeker can generate both
attention heatmaps as well as the chronological sequence of click data [72]. Regarding these
previously mentioned restrictions and requirements, REyeker will be the primary tool for the
survey, as its flexibility and features are fitting well.

2.3 Neuroimaging

2.3.1 General

The study of the human body is a field in science that has been explored for centuries. More
discoveries and progress in science led to an increasingly better understanding of the human
body and mind. Thanks to the recent surge in technology, previously unthinkable research
was no longer a dream. Measuring the structure and activity of the brain of a living organ-
ism was possible and improved further over time. Early methods used X-rays, which were
low in temporal and spatial resolution and more harmful to the human body than previously
assumed. Spatial resolution can be compared to an image’s pixel density, where a higher

10

2 Theory

resolution implies a more detailed image. The temporal resolution expresses how fast brain
activity changes can be detected. Temporal resolution can be compared to the shutter time
of a camera, where fast changes in the image produce a blur over the area of the change.

Figure 2.6: Brodman-area activation during
comprehension based on semantic
cues [11]

If the temporal resolution is too low, all differ-
ent brain activities get added up or averaged
out, defeating the purpose of analyzing spe-
cific brain activities if they switch activity lev-
els too fast. Scientists have since developed
better methods to map the structure of the
brain. For example, with functional magnetic
resonance imaging (fMRI) researchers could
measure the brain’s activity via the blood-
oxygen level. When the brain activity in an
area increases, the need for oxygen increases
in that area. This effect is known as the
BOLD (Blood-Oxygen-Level-Dependent) ef-
fect — the oxygen level increases and peaks
after around 5 seconds of brain activity and
decreases on average after 12 seconds after
finishing the task [59]. Therefore, before,
during and after the task, the baseline BOLD
level needs to be recorded to detect brain activity accurately. Complicated activities such as
solving a puzzle or understanding a sentence activate multiple areas of the brain, as depicted in
figure 2.6. These different brain areas are classified as Brodmann areas. There are 52 Brodmann
areas associated with different mental processes [29].
Other less restrictive methods, such as functional near-infrared spectroscopy (fNIRS) and Elec-
troencephalography (EEG), can complement each other to measure brain activity. Therefore,
researchers use these methods separate from each other and together to study cognitive pro-
cesses. While research has been done on reading source code since 1990 [19], the first papers
to study comprehending programming source code with neuroimaging methods were published
in 2014 [35, 53, 69], so this field of study is a recent one.

2.3.2 Constraints

When researching or measuring cerebral activity with neuroimaging, the test implementation
and equipment restrict researchers in several ways. The test subject must be conscious and ac-
tively comprehend the visual stimulus, such as the source code.
The test participant is in the measuring tube when researching brain activity with fMRI, as
shown in figure 2.7. This specific test setup was used by N. Peitek et al [60]. Even though dif-
ferent neuroimaging methods like EEG and fMRT do not require lying in a tube, fMRI provides
much valuable research data and is used in many research trials on this topic [14, 22, 26, 37, 48].
The subject can only see the distant screen through a mirror, so the source code needs high read-

11

2 Theory

Figure 2.7: Test setup of an fMRI study with eye-tracker [60]

ability and sufficient character size. In addition, all parts used in the fMRI scanner need not be
magnetic to affect the measurements, so the eye-tracker, screen, and answering tool must me
non-magnetic. Additionally, the scanner has decreased controls to a limited amount of buttons
for the test subjects, so scrolling or free inputs are not in the realm of possibility. Widely avail-
able fMRI button response systems will only have a small cable connected to a remote with a
limited number of buttons [75]. Because of these restrictions, any researcher has to choose their
source code carefully to fit these parameters. Furthermore, speaking is not possible during the
test, as that would introduce involuntary head movements. Participants often wear earplugs for
noise protection [59, 60, 69, 71].
Additionally, the questions given to the test subject in the scanner have to be answerable with
the limited amount of buttons present. These questions have to show an understanding of the
source code, so they need to be selected thoughtfully, and the answers present should not imply
the solution nor be solvable through the exclusion procedure. Because of the need to record the
baseline BOLD, the research requires control questions. These control questions should lay in
a visually similar context but without any understanding needed. The chosen task was to locate
syntax errors several times [24, 59, 60, 69]. The critical difference between answering questions
for understanding purposes and pattern matching for syntax error location is that for the second,
there is no understanding of the underlying code needed while still looking at similar words and
patterns. The brain regions responsible for reacting to the source code will activate for both,
while the code understanding areas will only activate when stimulated by comprehension ques-
tions [69]. Furthermore, the questionnaire should have a limited time scope, as the test subjects
will become tired and restless, which may cause unwanted head movements [26, 43, 60].

2.4 Focus of current source code comprehension
studies

While many different studies are researching the understanding of program source code, there
are several similarities and diversifying features between them. In this literature analysis, 60
source code comprehension studies were considered. Of these, 28 mainly used neuroimaging
and 32 mainly eye-tracking methods. Eye-tracking studies have been conducted far longer, as

12

2 Theory

the technologies needed were earlier available in the late twentieth century. Due to the many dif-
ferences like constraints and possible insights, the two methods will be compared independently
first and generally afterwards. A direct comparison between both parts would be unwieldy and
does not provide valuable insight. Instead, this literature analysis aims to understand how these
studies are conducted and where the focus lies. The analysis gives an overview of the research
topics, test setup, comprehension direction, question topics, question types, answer methods,
and additional information.

2.4.1 Focus of current studies using eye-tracking

The first eye-tracking studies researching code comprehension were conducted around 1990
[19]. These studies mainly focused on the reading direction of source code and general com-
prehension but also focused on the benefit of syntax highlighting [64], capitalization [7] or
indentation [4]. Eyetracking studies are especially interesting for studying computer program-
ming, as the study environment is nearly identical to the work environment for test subjects:
The test participant sits at a table in front of a Monitor, similar to figure 2.5a. Close to the
monitor is the eye-tracking device placed, and the candidate is instructed to hold their head still
not to deteriorate any results. Due to the improving technology, better detail was possible to
record and analyze. These studies employed a diverse set of eye-monitoring technology such
as eye-movement monitors [19], desk-mounted eye-trackers [6, 9, 12] and head-mounted eye-
trackers [39] by a wide variety of manufacturers.
Most eye-tracking studies utilize top-down comprehension (2.1.1). For example, in more than
20 cases [1, 3, 5, 7, 9, 10, 12, 18, 19, 47, 49, 50, 55, 56, 61–63, 65, 66, 78, 80], unmodified
source code was used to simulate software developers’ typical reading environment. At the
same time, only five studies obfuscated their code [4, 6, 11, 27, 38] to force bottom-up com-
prehension. Only one study utilized both top-down and bottom-up comprehension [58]. These
unevenly distributed parts of obfuscated and clean syntax code may be explained by the drive to
research the reading behaviour in general and the extent of the impact of visual changes in code,
which would be impossible to investigate with non-standard code. For example, these visual
changes to the programming code could be the identifier style (CamelCase and under score) or
syntax highlighting [7], which do not impact the code execution.
There are three different main topics asked of the test subject. The most common topics are
asking for a summary of the code provided (ten times) [1, 10, 38, 47, 49, 50, 57, 61–63, 78],
asking for the output of the function (eight times) [4, 7, 9, 12, 55, 56, 58, 61] and bug finding
and correction (seven times) [3, 5, 47, 55, 66, 78, 80]. Several studies [47, 55, 61, 78] em-
ploy multiple question topics as main and control questions because of the differences between
understanding code and finding syntax bugs. There are also different kinds of question top-
ics asked, such as finding specific variables in code [65] and filling in the blanks [18]. These
question topics provide different approaches to help understanding the reading direction, code
comprehension, and solution methods of programmers in different qualification categories. Sev-
eral studies [6, 11, 19, 39] did not describe the specifics of their questions or answer types and
at most summarized them as understanding or comprehension questions.

13

2 Theory

As for question types, there are two distinct main answering methods used. The most common
method was to let the test subject answer the question in full. The test subjects of nine stud-
ies [3, 5, 47, 49, 50, 63, 66, 78, 80] answered verbally. In addition, five studies provided a text
box [1, 4, 55, 58, 62]. Finally, six studies provided multiple-choice answers [8, 9, 27, 57, 61, 65].
These free answer types can be attributed to the minor restrictive nature of eye-tracking devices.
The test subject can still move and behave normally in the research environment. These answer
types also provide a large amount of insight into the comprehension process of the test subjects.
On the other hand, multiple-choice restricts the answering process of the test subject so that
they may infer the correct answer from the provided solutions. On the other side, answers can
be significantly faster.
Lastly, eye-tracking studies research the error finding process with great interest, as eight studies
look into either the finding of syntax errors [19], logical errors [5, 56, 66, 78, 80] or a combina-
tion of those [47, 55]. Errors often happen in programming. There are two distinct error types:
syntax and logical. A statement is syntactically correct if it follows all rules and regulations of
the given programming language. These errors are the easiest to find, as it stops the compiler
from processing the code. Fortunately, many IDEs highlight the wrong syntax pieces when
writing code so that they can be corrected early. Logical errors happen when the code syntax
is correct, but the program’s output is wrong or even missing. Unfortunately, these errors are
often hard to find because there can be many possible reasons in many different parts of the
code. Examples can be the wrong order of code in a function, returning before calculating the
result, or having a wrong equation to calculate a distance used in other functions.

2.4.2 Focus of current studies using neuroimaging

Figure 2.8: Frequency of technologies used
in neuroimaging studies

The first code comprehension studies utilizing
neuroimaging started in 2014 [35, 53, 69]. The
main research topics focused on the activation of
specific brain areas [14, 17, 22, 34, 37, 45, 69, 71]
and brain activation strength [13, 15, 16, 24, 25,
28, 35, 36, 44, 51, 53, 81].
However, many studies also researched both ar-
eas [26, 42, 43, 59]. This data helps understand
the neurological aspects of source code compre-
hension compared to natural language. Research
is also being done to discern the differences be-
tween reading the words of source code and un-
derstanding them [14, 24, 42, 59, 60, 69, 71].
Different neuroimaging devices can record differ-
ent specifics with different accuracies. Concisely,
these different devices have different use-cases
and constraints. As can be seen in figure 2.8, the
different technologies are used with different fre-

14

2 Theory

quencies. Of the considered 28 studies using primarily neuroimaging methods, eleven used
fMRI [14, 22, 26, 34, 37, 43, 48, 59, 60, 69, 71], nine EEG [17, 28, 30, 36, 42, 44, 45, 51, 81]
and four fNIRS [24, 25, 35, 53]. Other methods are heart-rate monitors [16] and the recording
of HRV (heart rate variability) and pupil dilation [15]. The two multi-modal studies [13, 33]
employed multiple of these devices at once (fMRI, fNIRS, EEG, ECG). Additionally, Eyetrack-
ing was employed for studies using fMRI [22, 60], EEG [36, 44] and fNIRS [25]. Figure 2.8 is
a visualization for the amount of used technologies.
These neuroimaging studies have primarily used Bottom-up comprehension with obfuscated
code. Of the studies examined, 14 used bottom-up comprehension [17, 24–26, 28, 34, 36, 37,
42, 45, 48, 53, 59, 69, 81], and four used top-down comprehension [13, 24, 25, 43]. In addition,
two studies [60, 71] used both bottom-up and top-down.
Eleven studies [17, 26, 28, 35, 37, 45, 48, 59, 60, 69, 71] asked for the output of the function
to test the comprehension of the employed code snippet. Several studies used error location
detection either as primary (semantic errors) [14, 22, 25] or as control questions (syntax er-
rors) [24, 42, 59, 60, 69, 71]. Other studies employed a wide array of different code comprehen-
sion methods, such as summarizing the function [42], writing code [13, 43] or finding the value
of a specific variable in a specific line. Some studies also did not show standard source code but
used either a different question setup like intelligence tests [30] or asked to manipulate computer
science data structures mentally [33]. Additionally, several studies [15, 16, 24, 44, 51, 53, 81]
did not provide any information about the questions or other specifics like the used code snip-
pets for their studies.
There was also a wide array of different control questions like the previously mentioned syntax
error localization, pull request simulation [26], reading natural text [15, 25, 28, 37, 51], men-
tal arithmetics [35], reading clean source code [14] or remembering fake code [48]. Due to
the restrictions of the different neuroimaging devices (2.3.2), the answer types were mostly
a short open answer [17, 22, 25, 35, 37, 59, 60, 69, 81] or answered via multiple-choice
[26, 28, 45, 48, 71]. In addition, these studies employed many different answer methods, for ex-
ample, writing down the values of variables at multiple checkpoints in the code snippet [53] or
requiring the test subject to write code themselves [43]. Neuroimaging studies seem to procure
valuable data for understanding source code comprehension. Many different devices, methods
and survey techniques are used, and the research will likely continue for several years as new
techniques and technologies are uncovered.

2.4.3 Differences between studies employing neuroimaging and
eye-tracking

Even though there are studies for researching source code reading using neuroimaging or eye-
tracking means, the approach significantly differs between the two techniques. On one side,
eye-tracking devices are great for recording the reading order of source code. On the other side,
it does not help much in understanding the neurological differences between reading source
code or natural language. Furthermore, eye-tracking devices and methods are very inexpensive
compared to neuroimaging devices, which can cost several hundred thousand euros and require

15

2 Theory

(a) Frequency of understanding direc-
tions (b) Frequency of used tasks

Figure 2.9: Comparison of metrics used by code comprehension studies using Neuroimaging
and Eye-Tracking methods

extensively trained personnel for proper use. Both research fields focus on different specifics
in order to make better use of their advantages. For example, as seen in figure 2.9a, most neu-
roimaging studies use Bottom-Up comprehension induced by obfuscated code. Meanwhile,
most Eye-tracking studies use unmodified source code not to change too much of the working
environment. Eye-tracking studies also induce fewer restrictions on the test subjects. As a re-
sult, the researchers can employ different and open response options like asking for a complete
summary of the code snippet or filling in a blank, which can be seen in figure 2.9b. On the
other side, the answer possibilities of neuroimaging studies are severely reduced due to these
restrictions. Therefore, these studies mainly employ short open answers and multiple-choice
questions.
Many studies in both fields investigate the solving of software errors. Errors, also known as
bugs, are programming mistakes that prevent the expected output. Errors are unavoidable in
software development. Finding ways to prevent software problems from occurring would pre-
vent many hours or days of bug-fixing. Time saved could be used to create innovative soft-
ware [3]. Both fields investigate software errors with a different focus. Neuroimaging studies
are primarily interested in finding syntactical errors as a control question. Few neuroimaging
studies do focus on the bug-finding process of semantic errors. Several Eye-tracking studies
try to understand how programmers find and correct bugs and focus more on logical errors.
Neuroimaging studies also mainly focus on a single research point with control questions, pre-
sumeably because of the short research done.
Eye-tracking studies generally do not use a different task as control question, but several studies
employ a combination of different tasks, all of which are primary research tasks [55, 61, 78].
Control questions used for neuroimaging studies were mainly syntax error location [24, 42, 59,
60, 69, 71], but also non programming related [15, 25, 28, 35, 37, 51] or other. One char-
acteristic that both research fields have in common is the lack of attention given to the ques-
tions and answers used in the surveys. For example, many studies did not provide the used

16

2 Theory

code snippets [14–16, 44, 51, 57], and many studies did not provide specifics about questions
asked [6, 7, 11, 15, 16, 19, 24, 39, 44, 51]. Finally, the examined survey papers may only be a
sample size, but around one paper out of five did omit data from their survey setup.

17

3 Study Design

After providing an overview over the topic, the technical details of the study will be presented.
This chapter aims to portray every vital facet of the experiment. It contains the study’s prepara-
tion, participants and execution procedure to provide the best possible data set.

3.1 Objective

This study aims to understand whether there are differences in answer behavior for code com-
prehension studies when using distinct question types. Specifically, three distinct question types
are chosen to be compared regarding answering time and correctness.

3.2 Experimental Material

3.2.1 Question Types

The three chosen question types are:

1. Was ist die Ausgabe dieser Funktion?
(What is the Output of the function?)

2. In welcher Zeile existiert zuerst die größte ganzzahlige Variable?
(What is the first line where an integer variable has the highest value?)

3. Welche Beschreibung passt am besten zu dieser Funktion?
(What summary fits the function best?)

There are several reasons why those three question types were used. Due to the nature of
this survey analysing programming code comprehension utilising both eye-tracking (section
2.4.1) as well as neuroimaging (section 2.4.2) means, question types one and three were chosen
because they amounted to the majority of in their respective fields. Both question types were
used in more than half of the investigated code comprehension studies. Even though bug finding
and correction was the third most used question type in previous surveys, it cannot be used in
this survey, as the code would need to be adjusted. Any code changes would introduce another
study variable, so another question needed to be found.
The second question (What is the first line where an integer variable has the highest value?) has

18

3 Study Design

Topic LoC # Topic LoC
1 Factorial calculation 9 6 Exponentiation 9
2 Integer to binary 12 7 Reversing a string 8
3 Finding largest integer in a List 10 8 Median of a List 11
4 Cross sum calculation 9 9 Reversing a list 11
5 Prime number test 11 10 Swapping 2 integers 9

Table 3.1: Code Snippets used in the main experiment in order (#) and length (LoC)

not been used in this way before. A similar question (Example: What is the value of variable x
at the sixth line in the second loop?) has been used by Ishida and Uwano [36]. This question
needed to be changed to a question that fits to every code snippet without further modification.
The variation of the task used here provides two benefits. This version can be used for any code
snippet employing integer variables and it would not introduce additional study variables. This
question type sparks interest because it does not require solving the function for the output, nor
does it prompt any recognition from the reader as this is not a task the reader is likely familiar
with. Additionally, the reader needs to keep multiple values in working memory to compare
the highest value of each line. The third question type went through multiple iterations because
several borderline cases emerged when testing where the correct answer was unclear.
Every code snippet is paired with every question type, so there are 30 different combinations of
tasks.

3.2.2 Code Snippets

Ten source code snippets were selected. To reduce the amount of further variables, those used
code snippets needed to comply with several restrictions. They needed to be short and of similar
length. The complexity and difficulty also needed to be similar to compare the collected data.
For this reason, ten different snippets, both linear and non-linear, were used from a collection
of code snippets for programming comprehension studies. This list is curated by the computer
engineering faculty [68] of the Technical University Chemnitz [76].
The chosen snippets all used a different single function with one concept and had a length of
eight to twelve lines of code. These snippets include ”Finding the largest integer in a list”,
”sorting an array in reverse”, ”outputting the median”, or swapping two numbers. The code
snippets can be found on the Github repository of this study [46]. A full list of the questions
can be seen in table 3.1. For explanatory purposes, three more snippets were created. Those
explanation snippets had a very low complexity, so the test subjects can focus on learning to use
the tool and explain the sequence of the experiment.
All code snippets used obfuscated code with no syntax highlighting and non-descriptive variable
and function names with light grey font on a near black background, also known as dark mods.
As mentioned in section 2.1.2, understanding obfuscated code requires a higher mental load
from the test subject.

19

3 Study Design

(a) Output (b) Which line (c) Summary

Figure 3.1: Code snippet #3 with every question type as used in the survey

3.3 Experimental Units

Test subjects for this study were 16 people aged 22 to 29, with a median of 24 and an average of
24,375. All people had a background in computer sciences, and most(14) studied at university
when the survey was conducted and were programming for 3 to 9 years actively. The target
group was late bachelor’s students to early master’s students. The survey was advertised with
multiple methods. Additionally, before conducting the study, several possibly eligible people
were sent a link to a short preliminary survey containing only the first part of the main study.
This short survey was sent to find several people for a homogenous group of students between
20 and 30 with a computer science background because reading and understanding source code
was the topic. Ten test subjects were found by utilising this method.
In addition, on the first day of the experiment time window, an email was sent with the email
contribution list of the computer science faculty of the TUC. Further, there were multiple ad-
vertisement messages in multiple group chats, which contained a copied message containing
the same information and wording as the email. These messages contained the survey topic,
the expected duration and the link to the study. It also contained the information that every
participant can win a 20e voucher to a shop of their choosing. All messages were in german
because the study was designed in German, so unknown variables are minimised. In total, 35
people clicked the link to the study, while only 16 completed the survey. Several reasons for the
low numbers will be discussed in threats to validity in section 4.3.1.
The survey was open for answers for 14 days, from 2021-07-20 to 2021-08-02. The figure 3.3
shows the rate of responses over time. The bump at 2021-07-27 demonstrates the reaction to
another wave of advertisements and reminders in group chats. The test subjects were randomly
assigned into one of three groups during the main part of the study. These groups were sized 6,
6 and 4 due to the 17th test subject not completing the survey after already being assigned to
the third group.

20

3 Study Design

3.4 Tasks

The survey was conducted using SoSci Survey. The tasks provided to the test subjects are split
into two main parts. The first part is a test created by Siegmund et al. [70] to self-assess their
programming experience and record information about their person, studies and professional
programming experience. The personal data collected includes age, gender and colour vision
deficiency. Collected information about their studies included their major, year of enrollment,
intended degree, and the number of programming courses attended, devised by Siegmund et
al [70]. The second group of tasks is the primary purpose of this survey.
Each test subject sees a blurred image and multiple answers in plain text at the bottom.

Figure 3.2: View of the task for the participant

When the user clicks on the blurred image,
the user will deblur a rectangle-shaped area
around the cursor to read what is under-
neath. For every question, the test subject
is presented with a blurred image at the top
and plain text multiple choice answers at the
bottom, an example is visible in depiction
3.2. The test subjects need to focus parts
of the image to understand the question and
the code presented to answer the questions
correctly. Finally, they can choose an an-
swer of the four given answer options. Ev-
ery test subject sees ten code snippets in the
same order, but each group has a distinct or-
der of question types. For example, ques-
tion 3 will show the same code snippet for
every test subject, but each group will have
a different question, as seen in Figures 3.1a,
3.1b and 3.1c.

3.5 Hypotheses, Parameters, and Variables

Due to the aim to explore whether different question types have a different impact on the solving
of code comprehension studies, these three hypotheses are derived:

• H01: The choice of question types will have no significant impact on the solving time

• H11: The choice of question types will have a significant impact on the solving time

• H02: The choice of question type will have no significant impact on the correctness

• H12: The choice of question type will have a significant impact on the correctness

With these hypotheses in place, the variables can be derived. The leading independent variables

21

3 Study Design

are the presented question type and the task choice. Therefore, the dependent variables are the
correctness of each question and the solving time. Suppose one of these dependent variables
shows a significant difference between the three question types. In that case, the choice of
question type may substantially impact the results of surveys conducted for code comprehension
studies.

3.6 Experiment Design

This experiment follows a within-subject design where every test participant is subjected to ev-
ery question type evenly and sees every code snippet. The test subjects were evenly randomized
into one of three groups, determining which tasks were shown. Before the study was conducted,
it was unclear what exact data were needed for analysis. Therefore, many potential data points
were included. These included the personal data of the participants, the answers to the primary
survey and the data collected by REyeker [72] such as fixations and solving time.

3.7 Procedure

The survey procedure for the participants from receiving the survey link to successful comple-
tion will be presented in this section. Survey participants will open the survey by clicking the
link they had obtained via email or chat group for the duration of the study from the 20th of
July to the 2nd of August 2021. When the study is opened, they are presented with general
information. This information included convincing reasons why it is helpful to participate in
such studies and the possibility of winning a gift card. Additionally, it contained the expected
solving time, a short explanation about the content of the study, methods to deal with possible
software bugs and a reminder that their data will be collected and saved only for the study. This
information block was structured to improve readability, and essential words or phrases were
also formatted in bold or cursive. If they agree to the data collection mentioned earlier, they
will continue and arrive at the first part of the study.
The first part, as mentioned in section 3.4, collects personal information about the test partici-
pant, in detail age, gender and colour vision deficiency. Afterwards, the test subjects need to an-
swer questions about their studies and evaluate their programming expertise compared to peers
and professionals. Subsequently, they will be presented with another explanatory text about the
second part of the study. This information contains a short explanation about REyeker [72],
how to use it and a mention that there will follow examples directly after.
These tutorials explain how to solve the three question types and the nature of the expected
answer so that every test subject can answer the survey to the best of their knowledge. Every
tutorial question is in the same style as the main questions and requires the user to deblur the
code snippet to answer the question. After each question type, there is an explanation of why
the specific answer was correct, and the code snippet is shown without blur. When the user
completes the tutorial, they get an explanatory text informing them about the upcoming central

22

3 Study Design

part of the study. They are also reminded to get hydrated, keep focus, and not get distracted until
the end of the central part. In the central part, every survey participant is shown ten questions as
detailed in section 3.4. After completing this part, there is a text of thanks and the possibility to
enter the email address to enter the gift card giveaway, to receive information about the study’s
findings or both.

3.8 Execution

3.8.1 First evaluation

The first test subject wants to remain anonymous, but they have prior programming experience
and write software for a living. The participant does not belong to the correct target group as
they have graduated already, but they were perfect for a first trial run, as they could clearly
articulate their thoughts. As mentioned in the survey overview (section 3.4), the survey was
structured into two main parts. The first part is the general questionnaire to gain anonymous data
about the person and self-evaluate their programming expertise. The second part is the central
selling point of this thesis, the online eye-tracking component. The survey testing was done in
the home of the test subject on their private personal computer. This environment was perfect
because every respondent will be choosing a setting where they feel comfortable. Additionally,
the test subject could be surveyed without additional surveying software or hardware because
both test subject and observer were in the same room, so notes could be taken quickly. The test
subject was also asked to verbalize anything which seemed interesting, problematic, confusing
or questionable, to which they happily obliged.
As mentioned in section 3.3, the survey was created in german because it was conducted on
students of the Chemnitz University of Technology [76]. The trial run took about 40 minutes,
and ten were spent on the general part and 30 on the eye-tracking part. The trial test subject gave
much valid and constructive criticism and found several minor grammatical and consistency
errors. For some personal questions in the first part, they did not see the focus of the question,
so those questions were changed to highlight the critical information. Additionally, because they
were not in the target group, they were missing answers that differed from the target audience.
One example of these occurrences was the option ”already graduated” in the question for the
degree currently sought. The second and central part of the survey starts with a text welcoming
the participant and explaining the upcoming methods. One thing that needed to be made more
apparent was the eye-tracking method. It was unclear whether an eye-tracking device or a
camera was needed to proceed. The central part starts with a tutorial on the three different
question types mentioned in section 3.2.1.
All question types had some introduction text explaining the question and usage tips for the
eye-tracker. The question asking for the line of code with the highest single value was the
most complicated, so an explanation for the question in advance was added. This explanation
confused the test subject, as the two other questions did not explain the solution with a deblurred
image afterwards. These ambiguities were corrected afterwards. Additionally, the testee was

23

3 Study Design

Figure 3.3: Answer statistics of the survey

confused why there was no help text for the non-tutorial part of the survey. Therefore, clarity
has been reintroduced by adding an explanatory paragraph in the text just before the central
part. Another thing that stood out in the trial run was that the blurred images did not load.
This problem did not occur before. Nevertheless, a workaround has been found to this obstacle:
to change browser tabs and change back again. Then the images would load. This bug only
occurs with the firefox web browser, so a help paragraph was added for the tutorial questions to
complete the test. The test subject answered afterwards that the new approach for eye-tracking
was a fun time and offered another test run.

3.8.2 Main Experiment run

The link to the survey was sent to the mailing list and previously voluntarily registered partici-
pants on July 20, 2021. On that day, the link got also sent to several group chats with promising
members. The participating students were free to complete the survey at a time of their choos-
ing.
The return statistics can be seen in the figure 3.3. Orange are successful test completions, and
grey are aborted tests or page views. The increase in responses on July 27 is due to the addi-
tional advertising on that day. However, during the experiment run, one question was found to
have a typo, which made the question unanswerable due to missing visuals of the code snippets.
This problem was corrected during the survey run to have fewer survey abortions, but data from
task 8 will not be considered in the data evaluation.
During the survey, the participants could ask questions if they had any problems. Such re-
sponses helped find the error mentioned above in task 8. Generally, the survey was received
well and had near to no problems. Additionally, some respondents compared the survey to a
game and tried to complete the REyeker park with as few as possible clicks. There were no
other inconsistencies or problems founds.

24

4 Analysis and Results

This chapter aims to present and analyse the data recorded by the conducted survey.

4.1 Overview of collected Data

When conceptualising this research study, many possible ways were considered to achieve the
goal of comparing different question types. Due to the many possible hypotheses from the
simple statement of ”The choice of question may impact the result”, many different data points
were collected to provide a broad set of analysis approaches. This data included personal data
from each participant, as described in sections 3.3 and 3.4, as well as answers for the 30 different
tasks, general survey statistics and REyeker data points consisting of click-coordinates and
click-times in milliseconds. Due to the low amount of participants and the nature of the data,
several techniques based on normal distribution cannot be conducted. Outliers can skew the
results of statistical analyses, so they are typically removed from the data set. An outlier is a
value much higher or lower than most other values in a data set.
First, the data needs to be defined to be analysed further. When trying to define answering
times, multiple questions arise.
When does the participant start each task? Does ”being on the task page” already count to
solving the task? Does clicking the ”continue” button mean they finished the task? Did the
participant finish the task before and go on a walk before clicking continue?
Due to the usage of REyeker and the survey design, there are several possibilities for interacting
with those times. In detail, REyeker records the times for every click so that all times can
be analysed. For this analysis, the first and last click will be considered for measuring the
answering time. SoSci Survey also saves completion times for every task so that these times
can function as a completion point for each task. Due to the survey design, the participant will
not see the question or the code snippet clearly when starting the task, so it is impossible to
start answering the task the second the survey page is shown. For this reason, the first click will
count as starting the answering process. This approach altered the solving times drastically. In
several cases, the participant waited more than a minute before clicking on the REyeker field.
Generally, participants took between one and thirty seconds before clicking, with an average of
around 4.5 seconds after discarding significant outliers.
Given the click data recorded by REyeker, one case was found where the participant did not
interact with the code snippet. For simplicity, clicking the ”continue” button will be equated
to completing the task because the test participant may ponder an indefinite amount of time

25

4 Analysis and Results

(a) Average of solving times (b) Average of correct answers

Figure 4.1: Comparison of (a) solving times and (b) correctness per task

over the question before deciding on an answer. Additionally, in the information text before the
main question set, the participant was urged to complete the central part without any breaks as
mentioned in section 3.7.

4.2 Analysis and Results

4.2.1 Impact of question types on solving times

Figure 4.2: Histogram of all solving times with-
out dividing into question types

Due to the hypotheses of the experiment,
solving times and answer correctness will be
compared between the question types. An
overview of the average solving times and
the average correct answers per task can be
seen in figures 4.1. This data was previously
cleaned of outliers using the robust test for
multiple outliers with a modified Z score �
3.5 devised by Iglewicz and Hoaglin [31].
However, due to the uneven group numbers,
the total numbers cannot be compared di-
rectly but by proportions. Additionally, recorded times often skew heavily towards 0, as shown
in figure 4.2. This phenomenon is often seen when recording finishing times in general, as
the minimal time to complete a task has a lower bound but no upper limit. More examples of
skewed times are competitions where people try to race to complete a goal faster than others, as
seen in video game speedrunning (figure 4.3a) and running marathons (figure 4.3b).
Due to the upcoming frequent occurrence of the three question types, they will often be short-

ened to question types 1 (”What is the Output of the function?”), 2 (”What is the first line where
an integer variable has the highest value?”) and 3 (”What summary fits the function best?”).
When Comparing average and mean times for every question type, the tutorial question times
(question 0) have been excluded from calculations. The same exclusion was done for compar-

26

4 Analysis and Results

(a) Celeste Any% speedrunning (b) marathon times of Rennsteiglauf 2018

Figure 4.3: Right skewed histograms of recorded times

Question type count N mean x̄ median standard deviation s

1 - Output 46 97.1817 s 77.66 s 55.9735
2 - Which Line 50 85.1316 s 71.05 s 52.4860
3 - Summary 44 75.4186 s 59.42 s 53.2184

Table 4.1: Relevant statistics for solving times

ing correctness. Relevant statistical values can be seen in table 4.1. By comparing mean and
median solving times, question type 1 took the longest, 2 was the second longest and number 3
was the shortest. Further, the solving times seem to vary for each task but generally follow the
results shown by average and mean calculations. Discrepancies between average and mean can
be attributed to the right skew of all answer times, as seen in figure 4.2.
Comparing this raw data for the hypotheses would raise the suspicion that the question types
impact the solving time of code comprehension studies. This conclusion is based on the fact that
no other variable influences the recorded data, and the hypotheses are independent. When tak-
ing a closer look at solving times and correct answers, question type 3 requires extra attention.
It shows the highest correctness and the lowest time to complete, suggesting that this question
was easier to answer. This statement is not a problem at first, but when comparing the answer
possibilities of all three question types, this one is the only one with words as options. When
considering the experiment setup as shown in figure 3.2, the answer options are visible before
looking at the question and the code. This fact is also correct for question types 1 and 2, but
whole words convey meaning far better than alphabetically sorted numbers without a context.
The test participants are possibly deducing parts of the solution from reading the answer option,
while this approach is not possible for question types 1 and 2.
When approaching the hypotheses statistically, several problems occur. The main problem is
that no normal distribution can be detected using the Shapiro-Wilk test for each set of solving
times or for all solving times grouped together. Due to many ways to test for significance requir-
ing the data to have a normal distribution, these tests cannot be used. Examples of these tests
are the t-test and ANOVA (analysis of variance). Important statistical values are the count N of
collected values xi-xn, mean x̄ of the group and the sample standard deviation s, usually calcu-
lated with s =

q
1

N�1

PN
i=1(xi � x)2. Inserting the solving times for each group in an ANOVA

yields no detection of significant difference with a p-value of 0.16187, which is greater than
a normally used value of 0.05 to compare against. These results point to H01 being true and

27

4 Analysis and Results

Question type count N mean x̄ median standard deviation s

1 - Output 9 0.8240 0.8333 0.1469
2 - Which Line 9 0.7962 0.6666 0.1620
3 - Summary 9 0.9629 1 0.0735

Table 4.2: Relevant statistics for correctness

H11 being subsequently wrong. However, this conclusion cannot be drawn fully, as no normal
distribution could be found.

4.2.2 Impact of question types on correctness

Similar to the comparison of solving times, a definition of correctness is needed before com-
paring it. Participants provide one answer per task processed. Answers can be either right(1) or
wrong(0), depending on the chosen option in the multiple choice array. When grouping answers
together, they can be denoted with A3-2 = 4/6 when four of six answers in the third question
with the second question type (’Which Line’) are answered correctly. They can also describe
the number of correct answers of a participant, for example, Ap7 = 6/9, which means that par-
ticipant seven has answered six tasks of a maximum of nine correctly. Figure 4.1b shows the
averages of correct answers per task, grouped for the different code snippets and colour coded
by question type.
In total, 16 participants provided 144 answers, Aall = 123/144. Question type 1 provided
Aall-1 = 40/48 correct answers, question type 2 Aall-2 = 39/50 and question type 3 Aall-3 =

44/46. When looking deeper into the participant answer statistics, every participant had be-
tween AP-lowest = 6/9 and AP-highest = 9/9 correct answers, so no outliers were discarded.
For statistical comparisons, each task’s average correctness will provide insights. Nevertheless,
due to the small sample size, the Shapiro-Wilk test similarly showed a departure from normality.
However, with more data points, a normal distribution could be possible. Therefore, ANOVA
will be used on an ill-fitting dataset to show possible significance. For this case, the result is
significant at p ¡ 0.05. The f-ratio value is 4.04385. The p-value is 0.030653.
Tukey’s HSD (honestly significant difference) [77] will be used to detect the significant differ-
ence between which groups. Tukey’s HSD procedure facilitates pairwise comparisons within
ANOVA data. The F statistic shows whether there is an overall difference between the sample
means. Tukey’s HSD test allows determining which of the various pairs of means has a signif-
icant difference. This procedure shows a significant difference between question types 2 and
3. This result proposes the argument that hypothesis H1(2) seems correct, but without normal
distributed data, this cannot be entirely deduced.

28

4 Analysis and Results

4.2.3 Other analysis possibilities

While the hypothesises focus on the differences in solving time and correctness per question
type, there are many other methods of comparing question type in a code comprehension envi-
ronment. For example, data recorded by REyeker can be used for further analysis by creating
attention heatmaps or sequence diagrams. An eye-tracking heatmap is a graphical representa-
tion of where a participant is looking while viewing a particular code snippet.
The resulting image shows which areas of the task are getting the most attention. High focus
areas are red, while low attention areas are blue. This attention data can be added and averaged
for each participant of a single task. The resulting heatmaps are visible in table 4.3. Due to
the focus area or REyeker being set too large and the low amount of participants, the heatmaps
differ only slightly and mainly focus on the parts with the highest difficulty.
Different heatmaps are still visible, for example, Question 9. The underlying task images are
the images used in the experiment but inverted and brightened for easier reading. This anal-
ysis procedure was also considered when creating the survey, but this analysis would require
qualitative and not quantitative comparisons.

Table 4.3: Average heatmaps for every task

Output Which line Summary

0

1

2

29

4 Analysis and Results

3

4

5

6

7

8 —- —- —-

9

10

30

4 Analysis and Results

4.3 Evaluation

As written in sections 4.2.1 and 4.2.2, the hypotheses can currently neither be confirmed nor de-
nied. The main question was whether the choice of question type impacts the execution of code
comprehension studies. For this reason, solving time and correctness were chosen as metrics
for determining significant differences. Additionally, many more metrics were recorded with-
out meaning to use them if a chance presented itself. Additionally, question type and answer
possibility choices were potentially not the most informative.
An open answer strategy may have reduced the effects of deducing the solution by seeing the
answer options and levelling the field for all question types. On the other side, open answer pro-
cedures may require much work to deduce correctness afterwards if the number of experiment
participants is high. Therefore, the multiple-choice approach was chosen for straightforward
quantitative analysis. In hindsight, many points of this study should have been changed.

4.3.1 threats to validity

Even though the hypotheses cannot be supported or denied, threats to validity will be discussed.

Internal Validity

The internal validity of an experiment is essential to demonstrate a causal link between two vari-
ables. Without strong internal validity, the conclusions of a causal relationship may be called
into question.
There are several types of internal threats to validity, including Confounding variables. These
variables are not controlled for in the study and can potentially skew the results. For example,
in this experiment, all test participants had similar computer science backgrounds but different
Java or programming experiences which could heavily impact the program comprehension part
of the study. Additionally, due to the online nature of the study, the test environment could
not be controlled. Therefore, daytime, hydration, exhaustion levels, monitor size, chair com-
fort, and many more variables can impact the results. The code snippets were chosen from
previously performed code comprehension studies to choose a set of similarly difficult samples.
Additionally, the questions were not randomized in order, which may produce a learning ef-
fect. This learning effect can be seen when comparing solving times for question types 1 and
2. Question type 2 took, on average, longer than question type 1, but this pattern changed dur-
ing the experiment. The selection of test subjects was also heavily biased. For example, only
german speaking students from the Chemnitz University of Technology took the test. Addition-
ally, most test subjects were personally asked to participate by the survey creator. The study
employed a dark background with light colored code which many programmers are used to,
and no test participant commented on the choice of dark mode, but the choice could nontheless
impact the result.
However, choosing REyeker as an approximation of visual attention helps to bring reliable data

31

4 Analysis and Results

if the size of the focus area is chosen correctly.

External Validity

The results of this study used only a limited set of simple iterative programs. Since experienced
programmers with advanced skills are recruited, it is difficult to generalize these results to other
situations, such as B. complex types of programs, novice programmers or expert programmers,
because the results are only applicable to similar situations. However, the setting is a valuable
representation because the choice of question type is not challenged beforehand.

4.3.2 lessons learned

There are many lessons learned during the creation of this bachelor’s thesis. One of the main
lessons learned is the need for a shorter survey, as many possible test subjects disregarded the
test early. The survey also presents too much text and a whole sub-survey that is not part of
the central survey. Reducing text and slimming the survey would have been severely needed.
Additionally, more intuitive test questions and survey procedures should be desired to avoid
several paragraphs explaining the question. As the return statistics have shown, advertising the
study brings in more participants. There should have been more and better advertising at the
Chemnitz University of Technology and perhaps at different universities. It is also not a good
idea to conduct the survey during the exam period when many students have no time. Addition-
ally, the hypotheses should be defined earlier and more clearly to help create the survey with the
hypotheses in mind. The hypotheses should also be chosen with analysis procedures in mind
to prevent situations where the data cannot be normally distributed. The type of answer possi-
bilities should also be reconsidered, as it should be possible to create regex terms to determine
correct answers automatically. A manual pass of all answers should also help weed out false
assessments.

32

5 Summary and further research

This thesis outlines code comprehension studies done with neuroimaging and eye-tracking tech-
nologies. It shows requirements, constraints and research areas, and an overview of used ques-
tion and answer types used in those studies. The result of the focus analysis showed that the
question types used in these kinds of studies were not important for the survey creators. After-
wards, a survey was developed using SoSci-survey and a remote eye-tracking technology called
REyeker to analyse the impact of the choice of question on the solving time and correctness.
The survey was conducted with 16 participants. Unfortunately, analysing the data showed that
the samples did not have a normal distribution and therefore could not be analysed statistically.
Even so, it cannot be ruled out that the question type may impact the solving of code compre-
hension studies, which could be analysed further with a different study and a better choice of
hypotheses.
In future studies, survey designers should pay more attention to the choice of questions, as their
choice of question type may have a non-negligible impact on solving these.

33

Bibliography

[1] N. J. Abid, B. Sharif, N. Dragan, H. Alrasheed, and J. I. Maletic. Developer reading
behavior while summarizing java methods: Size and context matters. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE), pages 384–395. IEEE,
2019.

[2] A. V. Aho. Compilers: Principles, Techniques and Tools (for VTU). Pearson Education
India, 2007.

[3] T. Barik, J. Smith, K. Lubick, E. Holmes, J. Feng, E. Murphy-Hill, and C. Parnin. Do
developers read compiler error messages? In 2017 IEEE/ACM 39th International Confer-
ence on Software Engineering (ICSE), pages 575–585. IEEE, 2017.

[4] J. Bauer, J. Siegmund, N. Peitek, J. C. Hofmeister, and S. Apel. Indentation: simply a mat-
ter of style or support for program comprehension? In 2019 IEEE/ACM 27th International
Conference on Program Comprehension (ICPC), pages 154–164. IEEE, 2019.

[5] R. Bednarik. Expertise-dependent visual attention strategies develop over time during
debugging with multiple code representations. International Journal of Human-Computer
Studies, 70(2):143–155, 2012.

[6] R. Bednarik and M. Tukiainen. An eye-tracking methodology for characterizing program
comprehension processes. In Proceedings of the 2006 symposium on Eye tracking research
& applications, pages 125–132, 2006.

[7] T. Beelders and J.-P. du Plessis. The influence of syntax highlighting on scanning and
reading behaviour for source code. In Proceedings of the Annual Conference of the South
African Institute of Computer Scientists and Information Technologists, pages 1–10, 2016.

[8] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, and B. Sharif. The impact of
identifier style on effort and comprehension. Empirical Software Engineering, 18(2):219–
276, 2013.

[9] T. Blascheck and B. Sharif. Visually analyzing eye movements on natural language texts
and source code snippets. In Proceedings of the 11th ACM Symposium on Eye Tracking
Research & Applications, pages 1–9, 2019.

[10] T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson, C. Schulte, B. Sharif, and
S. Tamm. Eye movements in code reading: Relaxing the linear order. In 2015 IEEE 23rd
International Conference on Program Comprehension, pages 255–265. IEEE, 2015.

34

Bibliography

[11] T. Busjahn, C. Schulte, and A. Busjahn. Analysis of code reading to gain more insight in
program comprehension. In Proceedings of the 11th Koli Calling International Confer-
ence on Computing Education Research, pages 1–9, 2011.

[12] T. Busjahn, C. Schulte, B. Sharif, A. Begel, M. Hansen, R. Bednarik, P. Orlov, P. Ihantola,
G. Shchekotova, and M. Antropova. Eye tracking in computing education. In Proceedings
of the tenth annual conference on International computing education research, pages 3–
10, 2014.

[13] A. Calcagno, S. Coelli, R. Couceiro, J. Durães, C. Amendola, I. Pirovano, R. Re, and A. M.
Bianchi. Eeg monitoring during software development. In 2020 IEEE 20th Mediterranean
Electrotechnical Conference (MELECON), pages 325–329. IEEE, 2020.

[14] J. Castelhano, I. C. Duarte, C. Ferreira, J. Duraes, H. Madeira, and M. Castelo-Branco.
The role of the insula in intuitive expert bug detection in computer code: an fmri study.
Brain imaging and behavior, 13(3):623–637, 2019.

[15] R. Couceiro, R. Barbosa, J. Durães, G. Duarte, J. Castelhano, C. Duarte, C. Teixeira,
N. Laranjeiro, J. Medeiros, P. Carvalho, et al. Spotting problematic code lines using
nonintrusive programmers’ biofeedback. In 2019 IEEE 30th International Symposium on
Software Reliability Engineering (ISSRE), pages 93–103. IEEE, 2019.

[16] R. Couceiro, G. Duarte, J. Durães, J. Castelhano, C. Duarte, C. Teixeira, M. C. Branco,
P. Carvalho, and H. Madeira. Biofeedback augmented software engineering: monitoring
of programmers’ mental effort. In 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering: New Ideas and Emerging Results (ICSE-NIER), pages 37–40. IEEE,
2019.

[17] I. Crk, T. Kluthe, and A. Stefik. Understanding programming expertise: an empirical
study of phasic brain wave changes. ACM Transactions on Computer-Human Interaction
(TOCHI), 23(1):1–29, 2015.

[18] M. E. Crosby, J. Scholtz, and S. Wiedenbeck. The roles beacons play in comprehension
for novice and expert programmers. In PPIG, page 5. Citeseer, 2002.

[19] M. E. Crosby and J. Stelovsky. How do we read algorithms?Acase study. Computer,
23(1):25–35, 1990.

[20] B. Dayma and P. Cuenca. Craiyon: Ai model drawing images from any prompt!
https://www.craiyon.com, 2022.

[21] R. Dewar. Setl and the evolution of programming. In From Linear Operators to Compu-
tational Biology, pages 39–46. Springer, 2013.

[22] J. Duraes, H. Madeira, J. Castelhano, C. Duarte, and M. C. Branco. Wap: understanding
the brain at software debugging. In 2016 IEEE 27th International Symposium on Software
Reliability Engineering (ISSRE), pages 87–92. IEEE, 2016.

[23] B. Easter. Fully human, fully machine: Rhetorics of digital disembodiment in program-

35

Bibliography

ming. Rhetoric Review, 39(2):202–215, 2020.

[24] S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope. The effect of poor source code lexi-
con and readability on developers’ cognitive load. In 2018 IEEE/ACM 26th International
Conference on Program Comprehension (ICPC), pages 286–28610. IEEE, 2018.

[25] S. Fakhoury, D. Roy, Y. Ma, V. Arnaoudova, and O. Adesope. Measuring the impact of
lexical and structural inconsistencies on developers’ cognitive load during bug localiza-
tion. Empirical Software Engineering, pages 1–39, 2019.

[26] B. Floyd, T. Santander, and W. Weimer. Decoding the representation of code in the brain:
An fmri study of code review and expertise. In 2017 IEEE/ACM 39th International Con-
ference on Software Engineering (ICSE), pages 175–186. IEEE, 2017.

[27] T. Fritz, A. Begel, S. C. Müller, S. Yigit-Elliott, and M. Züger. Using psycho-physiological
measures to assess task difficulty in software development. In Proceedings of the 36th
international conference on software engineering, pages 402–413, 2014.

[28] D. Fucci, D. Girardi, N. Novielli, L. Quaranta, and F. Lanubile. A replication study
on code comprehension and expertise using lightweight biometric sensors. In 2019
IEEE/ACM 27th International Conference on Program Comprehension (ICPC), pages
311–322. IEEE, 2019.

[29] L. J. Garey. Brodmann’s’ localisation in the cerebral cortex’. World Scientific, 1999.

[30] B. Helmlinger, M. Sommer, M. Feldhammer-Kahr, G. Wood, M. E. Arendasy, and S. E.
Kober. Programming experience associated with neural efficiency during figural reason-
ing. Scientific reports, 10(1):1–14, 2020.

[31] D. C. Hoaglin, B. Iglewicz, and J. W. Tukey. Performance of some resistant rules for
outlier labeling. Journal of the American Statistical Association, 81(396):991–999, 1986.

[32] B. (https://stackoverflow.com/users/575085/butterdog). Using emoji as identifier names in
c++ in visual studio or gcc, 2015.

[33] Y. Huang, X. Liu, R. Krueger, T. Santander, X. Hu, K. Leach, and W. Weimer. Distill-
ing neural representations of data structure manipulation using fmri and fnirs. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages 396–
407. IEEE, 2019.

[34] Y. Ikutani, T. Kubo, S. Nishida, H. Hata, K. Matsumoto, K. Ikeda, and S. Nishimoto.
Expert programmers have fine-tuned cortical representations of source code. Eneuro, 8(1),
2021.

[35] Y. Ikutani and H. Uwano. Brain activity measurement during program comprehension
with nirs. In 15th IEEE/ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD), pages 1–6. IEEE,
2014.

[36] T. Ishida and H. Uwano. Synchronized analysis of eye movement and eeg during program

36

Bibliography

comprehension. In 2019 IEEE/ACM 6th International Workshop on Eye Movements in
Programming (EMIP), pages 26–32. IEEE, 2019.

[37] S. Ivanova, AnnaAand Srikant, Y. Sueoka, H. H. Kean, R. Dhamala, U.-M. O’reilly, M. U.
Bers, and E. Fedorenko. Comprehension of computer code relies primarily on domain-
general executive brain regions. Elife, 9:e58906, 2020.

[38] A. Jbara and D. G. Feitelson. How programmers read regular code: A controlled experi-
ment using eye tracking. Empirical software engineering, 22(3):1440–1477, 2017.

[39] S. Jeanmart, Y.-G. Gueheneuc, H. Sahraoui, and N. Habra. Impact of the visitor pattern
on program comprehension and maintenance. In 2009 3rd International Symposium on
Empirical Software Engineering and Measurement, pages 69–78. IEEE, 2009.

[40] M. A. Just and P. A. Carpenter. A theory of reading: From eye fixations to comprehension.
Psychological review, 87(4):329, 1980.

[41] N. W. Kim, Z. Bylinskii, M. A. Borkin, A. Oliva, K. Z. Gajos, and H. Pfister. A crowd-
sourced alternative to eye-tracking for visualization understanding. In Proceedings of the
33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Sys-
tems, pages 1349–1354, 2015.

[42] M. V. Kosti, K. Georgiadis, D. A. Adamos, N. Laskaris, D. Spinellis, and L. Angelis. To-
wards an affordable brain computer interface for the assessment of programmers’ mental
workload. International Journal of Human-Computer Studies, 115:52–66, 2018.

[43] R. Krueger, Y. Huang, X. Liu, T. Santander, W. Weimer, and K. Leach. Neurological
divide: an fmri study of prose and code writing. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE), pages 678–690. IEEE, 2020.

[44] S. Lee, D. Hooshyar, H. Ji, K. Nam, and H. Lim. Mining biometric data to predict pro-
grammer expertise and task difficulty. Cluster Computing, 21(1):1097–1107, 2018.

[45] S. Lee, A. Matteson, D. Hooshyar, S. Kim, J. Jung, G. Nam, and H. Lim. Comparing pro-
gramming language comprehension between novice and expert programmers using eeg
analysis. In 2016 IEEE 16th International Conference on Bioinformatics and Bioengi-
neering (BIBE), pages 350–355. IEEE, 2016.

[46] B. Leister. Data from this study. https://github.com/Surlix/Eyecatcher QuestionTypeImpact,
2022.

[47] Y.-T. Lin, C.-C. Wu, T.-Y. Hou, Y.-C. Lin, F.-Y. Yang, and C.-H. Chang. Tracking stu-
dents’ cognitive processes during program debugging—an eye-movement approach. IEEE
transactions on education, 59(3):175–186, 2015.

[48] Y.-F. Liu, J. Kim, C. Wilson, and M. Bedny. Computer code comprehension shares neural
resources with formal logical inference in the fronto-parietal network. Elife, 9:e59340,
2020.

[49] I. McChesney and R. Bond. Eye tracking analysis of computer program comprehension

37

Bibliography

in programmers with dyslexia. Empirical Software Engineering, 24(3):1109–1154, 2019.

[50] I. McChesney and R. Bond. Observations on the linear order of program code reading
patterns in programmers with dyslexia. In Proceedings of the Evaluation and Assessment
in Software Engineering, pages 81–89. 2020.

[51] J. Medeiros, R. Couceiro, J. Castelhano, M. C. Branco, G. Duarte, C. Duarte, J. Durães,
H. Madeira, P. Carvalho, and C. Teixeira. Software code complexity assessment using
eeg features. In 2019 41st Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pages 1413–1416. IEEE, 2019.

[52] A. O. Mohamed, M. P. Da Silva, and V. Courboulay. A history of eye gaze tracking. 2007.

[53] T. Nakagawa, Y. Kamei, H. Uwano, A. Monden, K. Matsumoto, and D. M. German. Quan-
tifying programmers’ mental workload during program comprehension based on cerebral
blood flow measurement:A controlled experiment. In Companion proceedings of the 36th
international conference on software engineering, pages 448–451, 2014.

[54] A. Newman, B. McNamara, C. Fosco, Y. B. Zhang, P. Sukhum, M. Tancik, N. W. Kim,
and Z. Bylinskii. Turkeyes:A web-based toolbox for crowdsourcing attention data. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pages
1–13, 2020.

[55] M. Nivala, F. Hauser, J. Mottok, and H. Gruber. Developing visual expertise in software
engineering: An eye tracking study. In 2016 IEEE Global Engineering Education Con-
ference (EDUCON), pages 613–620. IEEE, 2016.

[56] R. Orlov, PavelAand Bednarik. The role of extrafoveal vision in source code comprehen-
sion. Perception, 46(5):541–565, 2017.

[57] P. Peachock, N. Iovino, and B. Sharif. Investigating eye movements in natural language
and c++ source code- A replication experiment. In International Conference on Aug-
mented Cognition, pages 206–218. Springer, 2017.

[58] N. Peitek, J. Siegmund, and S. Apel. What drives the reading order of programmers?
an eye tracking study. In Proceedings of the 28th International Conference on Program
Comprehension, pages 342–353, 2020.

[59] N. Peitek, J. Siegmund, S. Apel, C. Kästner, C. Parnin, A. Bethmann, T. Leich, G. Saake,
and A. Brechmann. A look into programmers’ heads. IEEE Transactions on Software
Engineering, 46(4):442–462, 2018.

[60] N. Peitek, J. Siegmund, C. Parnin, S. Apel, J. C. Hofmeister, and A. Brechmann. Simulta-
neous measurement of program comprehension with fmri and eye tracking: A case study.
In Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, pages 1–10, 2018.

[61] C. S. Peterson, T. Saddler, JonathanAand Blascheck, and B. Sharif. Visually analyzing
students’ gaze on c++ code snippets. In 2019 IEEE/ACM 6th International Workshop on

38

Bibliography

Eye Movements in Programming (EMIP), pages 18–25. IEEE, 2019.

[62] P. Rodeghero, C. Liu, P. W. McBurney, and C. McMillan. An eye-tracking study of java
programmers and application to source code summarization. IEEE Transactions on Soft-
ware Engineering, 41(11):1038–1054, 2015.

[63] P. Rodeghero and C. McMillan. An empirical study on the patterns of eye movement
during summarization tasks. In 2015 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), pages 1–10. IEEE, 2015.

[64] A. Sarkar. The impact of syntax colouring on program comprehension. In PPIG, page 8,
2015.

[65] Z. Sharafi, Z. Soh, Y.-G. Guéhéneuc, and G. Antoniol. Women and men—different but
equal: On the impact of identifier style on source code reading. In 2012 20th IEEE Inter-
national Conference on Program Comprehension (ICPC), pages 27–36. IEEE, 2012.

[66] B. Sharif, M. Falcone, and J. I. Maletic. An eye-tracking study on the role of scan time in
finding source code defects. In Proceedings of the Symposium on Eye Tracking Research
and Applications, pages 381–384, 2012.

[67] B. Sharif and J. I. Maletic. An eye tracking study on camelcase and under score identifier
styles. In 2010 IEEE 18th International Conference on Program Comprehension, pages
196–205. IEEE, 2010.

[68] J. Siegmund. Toward measuring program comprehension
with functional magnetic resonance imaging. https://www.tu-
chemnitz.de/informatik/ST/research/material/fMRI/index.php, 2022.

[69] J. Siegmund, C. Kästner, S. Apel, C. Parnin, A. Bethmann, T. Leich, G. Saake, and
A. Brechmann. Understanding understanding source code with functional magnetic reso-
nance imaging. In Proceedings of the 36th international conference on software engineer-
ing, pages 378–389, 2014.

[70] J. Siegmund, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg. Measuring and modeling
programming experience. Empirical Software Engineering, 19(5):1299–1334, 2014.

[71] J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeister, C. Kästner, A. Begel, A. Beth-
mann, and A. Brechmann. Measuring neural efficiency of program comprehension. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
pages 140–150, 2017.

[72] J. Siegmund, M. Schwarzkopf, and J. Mucke. Reyeker: Remote eye tracker, 2021.

[73] L. Thite and R. Brown. The history of eye tracking. 2015.

[74] TobiiAB. This is eye tracking, https://www.tobii.com/group/about/this-is-eye-tracking/,
2021.

[75] TroykaMED. fmri response button system, https://troykamed.com/en/urunler/fmri-

39

Bibliography

system/fmri-tepki-buton-seti/fmri-tepki-buton-seti/, 2021.

[76] TUC. Technical university chemnitz, 2021.

[77] J. Tukey. Multiple comparisons. Journal of the American Statistical Association,
48(263):624–625, 1953.

[78] R. Turner, M. Falcone, B. Sharif, and A. Lazar. An eye-tracking study assessing the
comprehension of c++ and python source code. In Proceedings of the Symposium on Eye
Tracking Research and Applications, pages 231–234, 2014.

[79] R.-G. Urma. Programming language evolution. Technical report, University of Cam-
bridge, Computer Laboratory, 2017.

[80] H. Uwano, M. Nakamura, A. Monden, and K.-i. Matsumoto. Analyzing individual perfor-
mance of source code review using reviewers’ eye movement. In Proceedings of the 2006
symposium on Eye tracking research & applications, pages 133–140, 2006.

[81] M. K.-C. Yeh, D. Gopstein, Y. Yan, and Y. Zhuang. Detecting and comparing brain ac-
tivity in short program comprehension using eeg. In 2017 IEEE Frontiers in Education
Conference (FIE), pages 1–5. IEEE, 2017.

40

	Introduction
	Motivation
	Problem

	Theory
	Comprehension directions
	Top-down comprehension
	Bottom-up comprehension

	Eye-tracking
	General
	Eye-tracking on source code
	Eye-tracking without an eyetracker

	Neuroimaging
	General
	Constraints

	Focus of current source code comprehension studies
	Focus of current studies using eye-tracking
	Focus of current studies using neuroimaging
	Differences between studies employing neuroimaging and eye-tracking

	Study Design
	Objective
	Experimental Material
	Question Types
	Code Snippets

	Experimental Units
	Tasks
	Hypotheses, Parameters, and Variables
	Experiment Design
	Procedure
	Execution
	First evaluation
	Main Experiment run

	Analysis and Results
	Overview of collected Data
	Analysis and Results
	Impact of question types on solving times
	Impact of question types on correctness
	Other analysis possibilities

	Evaluation
	threats to validity
	lessons learned

	Summary and further research

